Datatypes
tablite.datatypes
Attributes
tablite.datatypes.matched_types = {int: DataTypes._infer_int, str: DataTypes._infer_str, float: DataTypes._infer_float, bool: DataTypes._infer_bool, date: DataTypes._infer_date, datetime: DataTypes._infer_datetime, time: DataTypes._infer_time}
module-attribute
Classes
tablite.datatypes.DataTypes
Bases: object
DataTypes is the conversion library for all datatypes.
It supports any / all python datatypes.
Attributes
tablite.datatypes.DataTypes.int = int
class-attribute
instance-attribute
tablite.datatypes.DataTypes.str = str
class-attribute
instance-attribute
tablite.datatypes.DataTypes.float = float
class-attribute
instance-attribute
tablite.datatypes.DataTypes.bool = bool
class-attribute
instance-attribute
tablite.datatypes.DataTypes.date = date
class-attribute
instance-attribute
tablite.datatypes.DataTypes.datetime = datetime
class-attribute
instance-attribute
tablite.datatypes.DataTypes.time = time
class-attribute
instance-attribute
tablite.datatypes.DataTypes.timedelta = timedelta
class-attribute
instance-attribute
tablite.datatypes.DataTypes.numeric_types = {int, float, date, time, datetime}
class-attribute
instance-attribute
tablite.datatypes.DataTypes.epoch = datetime(2000, 1, 1, 0, 0, 0, 0, timezone.utc)
class-attribute
instance-attribute
tablite.datatypes.DataTypes.epoch_no_tz = datetime(2000, 1, 1, 0, 0, 0, 0)
class-attribute
instance-attribute
tablite.datatypes.DataTypes.digits = '1234567890'
class-attribute
instance-attribute
tablite.datatypes.DataTypes.decimals = set('1234567890-+eE.')
class-attribute
instance-attribute
tablite.datatypes.DataTypes.integers = set('1234567890-+')
class-attribute
instance-attribute
tablite.datatypes.DataTypes.nones = {'null', 'Null', 'NULL', '#N/A', '#n/a', '', 'None', None, np.nan}
class-attribute
instance-attribute
tablite.datatypes.DataTypes.none_type = type(None)
class-attribute
instance-attribute
tablite.datatypes.DataTypes.bytes_functions = {type(None): b_none, bool: b_bool, int: b_int, float: b_float, str: b_str, bytes: b_bytes, datetime: b_datetime, date: b_date, time: b_time, timedelta: b_timedelta}
class-attribute
instance-attribute
tablite.datatypes.DataTypes.type_code_functions = {1: _none, 2: _bool, 3: _int, 4: _float, 5: _str, 6: _bytes, 7: _datetime, 8: _date, 9: _time, 10: _timedelta, 11: _unpickle}
class-attribute
instance-attribute
tablite.datatypes.DataTypes.pytype_from_type_code = {1: type(None), 2: bool, 3: int, 4: float, 5: str, 6: bytes, 7: datetime, 8: date, 9: time, 10: timedelta, 11: 'pickled object'}
class-attribute
instance-attribute
tablite.datatypes.DataTypes.date_formats = {'NNNN-NN-NN': lambda x: date(*int(i) for i in x.split('-')), 'NNNN-N-NN': lambda x: date(*int(i) for i in x.split('-')), 'NNNN-NN-N': lambda x: date(*int(i) for i in x.split('-')), 'NNNN-N-N': lambda x: date(*int(i) for i in x.split('-')), 'NN-NN-NNNN': lambda x: date(*[int(i) for i in x.split('-')][::-1]), 'N-NN-NNNN': lambda x: date(*[int(i) for i in x.split('-')][::-1]), 'NN-N-NNNN': lambda x: date(*[int(i) for i in x.split('-')][::-1]), 'N-N-NNNN': lambda x: date(*[int(i) for i in x.split('-')][::-1]), 'NNNN.NN.NN': lambda x: date(*int(i) for i in x.split('.')), 'NNNN.N.NN': lambda x: date(*int(i) for i in x.split('.')), 'NNNN.NN.N': lambda x: date(*int(i) for i in x.split('.')), 'NNNN.N.N': lambda x: date(*int(i) for i in x.split('.')), 'NN.NN.NNNN': lambda x: date(*[int(i) for i in x.split('.')][::-1]), 'N.NN.NNNN': lambda x: date(*[int(i) for i in x.split('.')][::-1]), 'NN.N.NNNN': lambda x: date(*[int(i) for i in x.split('.')][::-1]), 'N.N.NNNN': lambda x: date(*[int(i) for i in x.split('.')][::-1]), 'NNNN/NN/NN': lambda x: date(*int(i) for i in x.split('/')), 'NNNN/N/NN': lambda x: date(*int(i) for i in x.split('/')), 'NNNN/NN/N': lambda x: date(*int(i) for i in x.split('/')), 'NNNN/N/N': lambda x: date(*int(i) for i in x.split('/')), 'NN/NN/NNNN': lambda x: date(*[int(i) for i in x.split('/')][::-1]), 'N/NN/NNNN': lambda x: date(*[int(i) for i in x.split('/')][::-1]), 'NN/N/NNNN': lambda x: date(*[int(i) for i in x.split('/')][::-1]), 'N/N/NNNN': lambda x: date(*[int(i) for i in x.split('/')][::-1]), 'NNNN NN NN': lambda x: date(*int(i) for i in x.split(' ')), 'NNNN N NN': lambda x: date(*int(i) for i in x.split(' ')), 'NNNN NN N': lambda x: date(*int(i) for i in x.split(' ')), 'NNNN N N': lambda x: date(*int(i) for i in x.split(' ')), 'NN NN NNNN': lambda x: date(*[int(i) for i in x.split(' ')][::-1]), 'N N NNNN': lambda x: date(*[int(i) for i in x.split(' ')][::-1]), 'NN N NNNN': lambda x: date(*[int(i) for i in x.split(' ')][::-1]), 'N NN NNNN': lambda x: date(*[int(i) for i in x.split(' ')][::-1]), 'NNNNNNNN': lambda x: date(*(int(x[:4]), int(x[4:6]), int(x[6:])))}
class-attribute
instance-attribute
tablite.datatypes.DataTypes.datetime_formats = {'NNNN-NN-NNTNN:NN:NN': lambda x: DataTypes.pattern_to_datetime(x), 'NNNN-NN-NNTNN:NN': lambda x: DataTypes.pattern_to_datetime(x), 'NNNN-NN-NN NN:NN:NN': lambda x: DataTypes.pattern_to_datetime(x, T=' '), 'NNNN-NN-NN NN:NN': lambda x: DataTypes.pattern_to_datetime(x, T=' '), 'NNNN/NN/NNTNN:NN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd='/'), 'NNNN/NN/NNTNN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd='/'), 'NNNN/NN/NN NN:NN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd='/', T=' '), 'NNNN/NN/NN NN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd='/', T=' '), 'NNNN NN NNTNN:NN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd=' '), 'NNNN NN NNTNN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd=' '), 'NNNN NN NN NN:NN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd=' ', T=' '), 'NNNN NN NN NN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd=' ', T=' '), 'NNNN.NN.NNTNN:NN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd='.'), 'NNNN.NN.NNTNN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd='.'), 'NNNN.NN.NN NN:NN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd='.', T=' '), 'NNNN.NN.NN NN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd='.', T=' '), 'NN-NN-NNNNTNN:NN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd='-', T=' ', day_first=True), 'NN-NN-NNNNTNN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd='-', T=' ', day_first=True), 'NN-NN-NNNN NN:NN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd='-', T=' ', day_first=True), 'NN-NN-NNNN NN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd='-', T=' ', day_first=True), 'NN/NN/NNNNTNN:NN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd='/', day_first=True), 'NN/NN/NNNNTNN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd='/', day_first=True), 'NN/NN/NNNN NN:NN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd='/', T=' ', day_first=True), 'NN/NN/NNNN NN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd='/', T=' ', day_first=True), 'NN NN NNNNTNN:NN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd='/', day_first=True), 'NN NN NNNNTNN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd='/', day_first=True), 'NN NN NNNN NN:NN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd='/', day_first=True), 'NN NN NNNN NN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd='/', day_first=True), 'NN.NN.NNNNTNN:NN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd='.', day_first=True), 'NN.NN.NNNNTNN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd='.', day_first=True), 'NN.NN.NNNN NN:NN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd='.', day_first=True), 'NN.NN.NNNN NN:NN': lambda x: DataTypes.pattern_to_datetime(x, ymd='.', day_first=True), 'NNNNNNNNTNNNNNN': lambda x: DataTypes.pattern_to_datetime(x, compact=1), 'NNNNNNNNTNNNN': lambda x: DataTypes.pattern_to_datetime(x, compact=1), 'NNNNNNNNTNN': lambda x: DataTypes.pattern_to_datetime(x, compact=1), 'NNNNNNNNNN': lambda x: DataTypes.pattern_to_datetime(x, compact=2), 'NNNNNNNNNNNN': lambda x: DataTypes.pattern_to_datetime(x, compact=2), 'NNNNNNNNNNNNNN': lambda x: DataTypes.pattern_to_datetime(x, compact=2), 'NNNNNNNNTNN:NN:NN': lambda x: DataTypes.pattern_to_datetime(x, compact=3)}
class-attribute
instance-attribute
tablite.datatypes.DataTypes.types = [datetime, date, time, int, bool, float, str]
class-attribute
instance-attribute
Functions
tablite.datatypes.DataTypes.type_code(value)
classmethod
Source code in tablite/datatypes.py
47 48 49 50 51 52 53 54 55 |
|
tablite.datatypes.DataTypes.b_none(v)
Source code in tablite/datatypes.py
57 58 |
|
tablite.datatypes.DataTypes.b_bool(v)
Source code in tablite/datatypes.py
60 61 |
|
tablite.datatypes.DataTypes.b_int(v)
Source code in tablite/datatypes.py
63 64 |
|
tablite.datatypes.DataTypes.b_float(v)
Source code in tablite/datatypes.py
66 67 |
|
tablite.datatypes.DataTypes.b_str(v)
Source code in tablite/datatypes.py
69 70 |
|
tablite.datatypes.DataTypes.b_bytes(v)
Source code in tablite/datatypes.py
72 73 |
|
tablite.datatypes.DataTypes.b_datetime(v)
Source code in tablite/datatypes.py
75 76 |
|
tablite.datatypes.DataTypes.b_date(v)
Source code in tablite/datatypes.py
78 79 |
|
tablite.datatypes.DataTypes.b_time(v)
Source code in tablite/datatypes.py
81 82 |
|
tablite.datatypes.DataTypes.b_timedelta(v)
Source code in tablite/datatypes.py
84 85 |
|
tablite.datatypes.DataTypes.b_pickle(v)
Source code in tablite/datatypes.py
87 88 |
|
tablite.datatypes.DataTypes.to_bytes(v)
classmethod
Source code in tablite/datatypes.py
103 104 105 106 107 108 109 110 111 112 |
|
tablite.datatypes.DataTypes.from_type_code(value, code)
classmethod
Source code in tablite/datatypes.py
177 178 179 180 |
|
tablite.datatypes.DataTypes.pattern_to_datetime(iso_string, ymd=None, T=None, compact=0, day_first=False)
staticmethod
Source code in tablite/datatypes.py
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
|
tablite.datatypes.DataTypes.round(value, multiple, up=None)
classmethod
a nicer way to round numbers.
PARAMETER | DESCRIPTION |
---|---|
value |
value to be rounded |
multiple |
value to be used as the based of rounding. 1) multiple = 1 is the same as rounding to whole integers. 2) multiple = 0.001 is the same as rounding to 3 digits precision. 3) mulitple = 3.1415 is rounding to nearest multiplier of 3.1415 4) value = datetime(2022,8,18,11,14,53,440) 5) multiple = timedelta(hours=0.5) 6) xround(value,multiple) is datetime(2022,8,18,11,0) |
up |
None (default) or boolean rounds half, up or down. round(1.6, 1) rounds to 2. round(1.4, 1) rounds to 1. round(1.5, 1, up=True) rounds to 2. round(1.5, 1, up=False) rounds to 1.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
float,integer,datetime: rounded value in same type as input. |
Source code in tablite/datatypes.py
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
|
tablite.datatypes.DataTypes.to_json(v)
staticmethod
converts any python type to json.
PARAMETER | DESCRIPTION |
---|---|
v |
value to convert to json
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
json compatible value from v |
Source code in tablite/datatypes.py
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
|
tablite.datatypes.DataTypes.from_json(v, dtype)
staticmethod
converts json to python datatype
PARAMETER | DESCRIPTION |
---|---|
v |
value
TYPE:
|
dtype |
any python type
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
python type of value v |
Source code in tablite/datatypes.py
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
|
tablite.datatypes.DataTypes.guess_types(*values)
staticmethod
Attempts to guess the datatype for *values returns dict with matching datatypes and probabilities
RETURNS | DESCRIPTION |
---|---|
dict
|
{key: type, value: probability} |
Source code in tablite/datatypes.py
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
|
tablite.datatypes.DataTypes.guess(*values)
staticmethod
Makes a best guess the datatype for *values returns list of native python values
RETURNS | DESCRIPTION |
---|---|
list
|
list of native python values |
Source code in tablite/datatypes.py
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
|
tablite.datatypes.DataTypes.infer(v, dtype)
classmethod
Source code in tablite/datatypes.py
505 506 507 508 509 510 511 512 513 514 515 516 517 |
|
tablite.datatypes.Rank(*items)
Bases: object
Source code in tablite/datatypes.py
730 731 732 733 |
|
Attributes
tablite.datatypes.Rank.items = {i: ixfor (i, ix) in zip(items, range(len(items)))}
instance-attribute
tablite.datatypes.Rank.ranks = [0 for _ in items]
instance-attribute
tablite.datatypes.Rank.items_list = [i for i in items]
instance-attribute
Functions
tablite.datatypes.Rank.match(k)
Source code in tablite/datatypes.py
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 |
|
tablite.datatypes.Rank.__iter__()
Source code in tablite/datatypes.py
752 753 |
|
tablite.datatypes.MetaArray
Bases: ndarray
Array with metadata.
Functions
tablite.datatypes.MetaArray.__new__(array, dtype=None, order=None, **kwargs)
Source code in tablite/datatypes.py
808 809 810 811 |
|
tablite.datatypes.MetaArray.__array_finalize__(obj)
Source code in tablite/datatypes.py
813 814 815 816 |
|
Functions
tablite.datatypes.numpy_to_python(obj: Any) -> Any
Converts numpy types to python types.
See https://numpy.org/doc/stable/reference/arrays.scalars.html
PARAMETER | DESCRIPTION |
---|---|
obj |
A numpy object
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Any
|
python object: A python object |
Source code in tablite/datatypes.py
699 700 701 702 703 704 705 706 707 708 709 710 711 712 |
|
tablite.datatypes.pytype(obj)
Returns the python type of any object
PARAMETER | DESCRIPTION |
---|---|
obj |
any numpy or python object
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
type
|
type of obj |
Source code in tablite/datatypes.py
715 716 717 718 719 720 721 722 723 724 725 726 |
|
tablite.datatypes.pytype_from_iterable(iterable: {tuple, list}) -> {np.dtype, dict}
helper to make correct np array from python types.
PARAMETER | DESCRIPTION |
---|---|
iterable |
values to be converted to numpy array.
TYPE:
|
RAISES | DESCRIPTION |
---|---|
NotImplementedError
|
if datatype is not supported. |
RETURNS | DESCRIPTION |
---|---|
{dtype, dict}
|
np.dtype: python type of the iterable. |
Source code in tablite/datatypes.py
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 |
|
tablite.datatypes.list_to_np_array(iterable)
helper to make correct np array from python types. Example of problem where numpy turns mixed types into strings.
np.array([4, '5']) np.ndarray(['4', '5'])
RETURNS | DESCRIPTION |
---|---|
np.array |
|
datatypes |
Source code in tablite/datatypes.py
819 820 821 822 823 824 825 826 827 828 829 830 831 832 |
|
tablite.datatypes.np_type_unify(arrays)
unifies numpy types.
PARAMETER | DESCRIPTION |
---|---|
arrays |
List of numpy arrays
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
np.ndarray: numpy array of a single type. |
Source code in tablite/datatypes.py
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 |
|
tablite.datatypes.multitype_set(arr)
prevents loss of True, False when calling sets.
python looses values when called returning a set. Example:
{1, True, 0, False}
PARAMETER | DESCRIPTION |
---|---|
arr |
iterable of mixed types.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
np.array: with unique values. |
Source code in tablite/datatypes.py
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 |
|